3.150 \(\int \sec (c+d x) (a+a \sec (c+d x))^{5/3} \, dx\)

Optimal. Leaf size=356 \[ -\frac{7\ 3^{3/4} a \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt{\frac{(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} (a \sec (c+d x)+a)^{2/3} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{10 \sqrt [3]{2} d (1-\sec (c+d x)) (\sec (c+d x)+1) \sqrt{-\frac{\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}}+\frac{3 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{5 d}+\frac{21 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{10 d (\sec (c+d x)+1)} \]

[Out]

(3*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(5*d) + (21*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(10*d*(1
+ Sec[c + d*x])) - (7*3^(3/4)*a*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^(1/3) -
 (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(2/3)*(2^(1/3) - (1 + Sec[c +
 d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqr
t[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(10*2^(1/3)*d*(1 - Sec[c + d*x])*(1 + Sec[c + d*x])*Sqrt[-(((
1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3
))^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.287137, antiderivative size = 356, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3828, 3827, 50, 63, 225} \[ \frac{3 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{5 d}+\frac{21 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{10 d (\sec (c+d x)+1)}-\frac{7\ 3^{3/4} a \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt{\frac{(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} (a \sec (c+d x)+a)^{2/3} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{10 \sqrt [3]{2} d (1-\sec (c+d x)) (\sec (c+d x)+1) \sqrt{-\frac{\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(3*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(5*d) + (21*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(10*d*(1
+ Sec[c + d*x])) - (7*3^(3/4)*a*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^(1/3) -
 (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(2/3)*(2^(1/3) - (1 + Sec[c +
 d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqr
t[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(10*2^(1/3)*d*(1 - Sec[c + d*x])*(1 + Sec[c + d*x])*Sqrt[-(((
1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3
))^2)])

Rule 3828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(1 + (b*Csc[e + f*x])/a)^FracPart[m], Int[(1 + (b*Csc[e + f*x])/a)^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3827

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^2*
d*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((d*x)^(n - 1)*(a + b*x)^(m -
 1/2))/Sqrt[a - b*x], x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \sec (c+d x) (a+a \sec (c+d x))^{5/3} \, dx &=\frac{\left (a (a+a \sec (c+d x))^{2/3}\right ) \int \sec (c+d x) (1+\sec (c+d x))^{5/3} \, dx}{(1+\sec (c+d x))^{2/3}}\\ &=-\frac{\left (a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{(1+x)^{7/6}}{\sqrt{1-x}} \, dx,x,\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{3 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 d}-\frac{\left (7 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt [6]{1+x}}{\sqrt{1-x}} \, dx,x,\sec (c+d x)\right )}{5 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{3 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 d}+\frac{21 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{10 d (1+\sec (c+d x))}-\frac{\left (7 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{10 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{3 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 d}+\frac{21 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{10 d (1+\sec (c+d x))}-\frac{\left (21 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{5 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{3 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 d}+\frac{21 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{10 d (1+\sec (c+d x))}-\frac{7\ 3^{3/4} a F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right ) (a+a \sec (c+d x))^{2/3} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt{\frac{2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{10 \sqrt [3]{2} d (1-\sec (c+d x)) (1+\sec (c+d x)) \sqrt{-\frac{\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0779026, size = 66, normalized size = 0.19 \[ \frac{4 \sqrt [6]{2} \tan (c+d x) (a (\sec (c+d x)+1))^{5/3} \text{Hypergeometric2F1}\left (-\frac{7}{6},\frac{1}{2},\frac{3}{2},\frac{1}{2} (1-\sec (c+d x))\right )}{d (\sec (c+d x)+1)^{13/6}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(4*2^(1/6)*Hypergeometric2F1[-7/6, 1/2, 3/2, (1 - Sec[c + d*x])/2]*(a*(1 + Sec[c + d*x]))^(5/3)*Tan[c + d*x])/
(d*(1 + Sec[c + d*x])^(13/6))

________________________________________________________________________________________

Maple [F]  time = 0.093, size = 0, normalized size = 0. \begin{align*} \int \sec \left ( dx+c \right ) \left ( a+a\sec \left ( dx+c \right ) \right ) ^{{\frac{5}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+a*sec(d*x+c))^(5/3),x)

[Out]

int(sec(d*x+c)*(a+a*sec(d*x+c))^(5/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{3}} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(5/3),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/3)*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (d x + c\right )^{2} + a \sec \left (d x + c\right )\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{2}{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(5/3),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c)^2 + a*sec(d*x + c))*(a*sec(d*x + c) + a)^(2/3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))**(5/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{3}} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(5/3),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(5/3)*sec(d*x + c), x)